In this thesis , an incremental - iterative solution procedure using the modified newton - raphson iteration is used to solve geometrically nonlinear problems 在涉及几何非线性问题的数值方法中,通常都采用增量和迭代分析的方法。
The given method is simple and high efficiency , because most classification problems could be done through the first criterion , and complex solution procedure in getting the object ' s area could be saved 该方法简单有效,在大多数情况下用准则一即可判断物体形状,从而避免进行较复杂的目标面积的计算。
In this paper , the general theory and numerical solution procedure were described . by building a diesel modeling with vertical valves and a piston bowl , a whole cycle was calculated , which include intake stroke , compression stroke , expansion stroke and exhaust stroke 通过对带有进、排气门的柴油机进行计算,模拟了一个完整循环内进气道、气门和缸内气体流动的全过程。
To solve an electrically large problem with clusters , the parallel solution procedure is very complex and the demands of the users ’ ability of development and application are very critical , such as the complex system and software environment , parallel programming and debugging 利用集群系统求解大问题,并行求解过程非常复杂,对用户的开发和应用要求极高,比如复杂的系统和软件环境,并行程序的设计和调试等。
The coordinate transformation rules , the combination characteristic of the transfer function are discussed . the solution procedure of series mechanical system is deduced by applying dual - vector addition and matrix multiplication . and the mathematical models are obtained 根据建立的数学模型,本文提出了相应的按位存储数据结构以及树型递归分解算法,实现了状态变换矩阵(包括类型、方向及变换特征)的自动分解。
A multi - block incompressible viscous flow solver has been developed that can be applied to simulation of a variety of ship maneuvering related flows and calculation of hydrodynamic forces . validation and verification of the solution procedure are carried out on several model problems with good agreement to experimental and numerical results . the present block - structured viscous flow solver is based on solving the reynolds - averaged navier - stokes ( rans ) equations with a second - order cell - centered finite volume method ( fvm ) on non - staggered grids 本文即在这种背景下,瞄准船舶操纵水动力预报方面的国际前沿和热点课题,通过对现代船舶粘性流计算方法的研究,自主开发了一个船舶操纵粘性流求解器,并将所开发的求解器成功地应用于一系列和船舶操纵问题相关的粘性流动与水动力计算,得到了令人满意的结果。
The contents of the course include the elastic problems and associated solution procedure ; the basic concepts and assumptions of elasticity ; the solution of a planar elastic problem defined in a rectangular coordinate ; the matrix expression of basic equations of a planar elastic problem ; the solution of a planar problem defined in a polar coordinate ; the basic equations and solution procedure of a three - dimensional elastic problem ; bending of a plate ; and the variational principles of energy 本课程的主要内容包括:弹性力学问题及其求解思想;弹性力学中的基本概念及基本假定;弹性力学平面问题的直角坐标解答;平面问题基本方程的矩阵表示;平面问题的极坐标解答;弹性力学空间问题的基本方程及其解法;薄板的弯曲;能量变分原理等等
Abstract : a new method , collaborative allocation ( ca ) , is proposed to solve the large - scale optimum allocation problem in aircraft conceptual design . according to the characteristics of optimum allocation in aircraft conceptual design . the principle and mathematical model of ca are established . the optimum allocation problem is decomposed into one main optimization problem and several sub - optimization problems . a group of design requirements for subsystems are provided by the main system respectively , and the subsystems execute their own optimizations or further provide the detailed design requirements to the bottom components of aircraft , such as spars , ribs and skins , etc . the subsystems minimize the discrepancy between their own local variables and the corresponding allocated values , and then return the optimization results to main optimization . the main optimization is performed to reallocate the design requirements for improving the integration performance and progressing toward the compatibilities among subsystems . ca provides the general optimum allocation architecture and is easy to be carried out . furthermore , the concurrent computation can also be realized . two examples of optimum reliability allocation are used to describe the implementation procedure of ca for two - level allocation and three - level allocation respectively , and to validate preliminarily its correctness and effectiveness . it is shown that the developed method can be successfully used in optimum allocation of design requirements . then taking weight requirement allocation as example , the mathematical model and solution procedure for collaborative allocation of design requirements in aircraft conceptual design are briefly depicted 文摘:探讨了一种新的设计指标最优分配方法- -协同分配法,用于处理飞机顶层设计中的大规模设计指标最优分配问题.分析了飞机顶层设计中的设计指标最优分配特征,据此给出了协同法的原理并建立了数学模型.协同法按设计指标分配关系将最优分配问题分解为主系统优化和子系统优化,主优化对子系统设计指标进行最优分配,子优化以最小化分配设计指标值与期望设计指标值之间的差异为目标,进行子系统最优设计,或对底层元件(如飞机翼梁、翼肋和翼盒等)进行设计指标最优分配,并把最优解信息反馈给主优化.主优化通过子优化最优解信息构成的一致性约束协调分配量,提高系统整体性能,并重新给出分配方案.主系统与子系统反复协调,直到得到设计指标最优分配方案.两层可靠度指标分配算例初步验证了本文方法的正确性与可行性,三层可靠度指标分配算例证明了本文方法的有效性.最后,以重量指标分配为例,简要叙述了针对飞机顶层设计中设计指标协同分配的数学模型和求解思路
A new method , collaborative allocation ( ca ) , is proposed to solve the large - scale optimum allocation problem in aircraft conceptual design . according to the characteristics of optimum allocation in aircraft conceptual design . the principle and mathematical model of ca are established . the optimum allocation problem is decomposed into one main optimization problem and several sub - optimization problems . a group of design requirements for subsystems are provided by the main system respectively , and the subsystems execute their own optimizations or further provide the detailed design requirements to the bottom components of aircraft , such as spars , ribs and skins , etc . the subsystems minimize the discrepancy between their own local variables and the corresponding allocated values , and then return the optimization results to main optimization . the main optimization is performed to reallocate the design requirements for improving the integration performance and progressing toward the compatibilities among subsystems . ca provides the general optimum allocation architecture and is easy to be carried out . furthermore , the concurrent computation can also be realized . two examples of optimum reliability allocation are used to describe the implementation procedure of ca for two - level allocation and three - level allocation respectively , and to validate preliminarily its correctness and effectiveness . it is shown that the developed method can be successfully used in optimum allocation of design requirements . then taking weight requirement allocation as example , the mathematical model and solution procedure for collaborative allocation of design requirements in aircraft conceptual design are briefly depicted 探讨了一种新的设计指标最优分配方法- -协同分配法,用于处理飞机顶层设计中的大规模设计指标最优分配问题.分析了飞机顶层设计中的设计指标最优分配特征,据此给出了协同法的原理并建立了数学模型.协同法按设计指标分配关系将最优分配问题分解为主系统优化和子系统优化,主优化对子系统设计指标进行最优分配,子优化以最小化分配设计指标值与期望设计指标值之间的差异为目标,进行子系统最优设计,或对底层元件(如飞机翼梁、翼肋和翼盒等)进行设计指标最优分配,并把最优解信息反馈给主优化.主优化通过子优化最优解信息构成的一致性约束协调分配量,提高系统整体性能,并重新给出分配方案.主系统与子系统反复协调,直到得到设计指标最优分配方案.两层可靠度指标分配算例初步验证了本文方法的正确性与可行性,三层可靠度指标分配算例证明了本文方法的有效性.最后,以重量指标分配为例,简要叙述了针对飞机顶层设计中设计指标协同分配的数学模型和求解思路